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REPRESENTATION OF TURBULENT SHEAR STRESS B Y  A PRODUCT 

OF MEAN VELOCITY DIFFERENCES 

by Wil l i s  H. B r a u n  

Lewis Research Center  

SUMMARY 

A simple argument leads to the proposal of a quadratic form in the mean velocity for 
the turbulent shear stress. 
locity differences whose roots a re  the maximum velocity in the flow and a "cutoff" ve- 
locity below which the turbulent shear s t ress  vanishes. Application to pipe and channel 
flows yields the centerline velocity as a function of pressure gradient, as well as the 
velocity profile. The flat-plate, boundary-layer problem is solved by a system of inte- 
gra l  equations to obtain the friction coefficient, the displacement thickness, and the 
momentum-loss thickness. 

The proposed form is expressed as the product of two ve- 

Comparisons are made with experiment. 

LNTRODUC TION 

Theories of turbulence a re  generally classified according to the number of partial 
differential equations that must be solved in conjunction with the Reynolds equation for 
the time-mean flow (Reynolds, ref. 1; Launder and Spalding, ref. 2). If one additional 
equation (e. g., an equation for the turbulent kinetic energy) must be solved, the theory 
is called a one-equation model; if, beyond that, a differential equation for the charac- 
teristic length of the turbulent motions must be solved, the theory is called a two- 
equation model; and so forth. 

The move toward more elaborate treatments of turbulent flows ar ises  from the 
failure of the zero-equation models, that is, those which model turbulent stresses with 
an algebraically specified relation to the mean-flow quantities, to prove both general 
and accurate. 
upon the hypothesis of Boussinesq (ref. 2) that the stress should be modeled as a product 
of an eddy viscosity and the mean-velocity gradient in the manner of Newton's law for 
viscous fluids. Various forms of this hypothesis have been successful in describing a 
wide variety of flows of practical importance. Nevertheless, it is now generally agreed 

The zero-equation theories have been constructed almost exclusively 



(Townsend, ref. 3, p. 107; Tennekes and Lumley, ref. 4, ch. 2) that this hypothesis 
does not have a firm physical base. 
theory, requires a supplement of empirical information and theoretical modification 
(ref. 2, lecture 2), which diminishes the confidence with which it can be transferred 
from one type of flow to another. 

The question that is asked and explored in this report is whether an alternative 
zero-equation model of turbulence can be constructed by formulating a hypothesis for 
stress that is compatible with its known physical and mathematical properties and that 
retains simplicity of form by relying on a minimum of empirical constants and func- 
tions. Elementary observations a re  shown to lead to a simple expression for s t ress  
that approximates closely the distribution found in several common types of flow. The 
s t ress  formula is applied to channel and pipe flows to find the velocity profiles and the 
variation of centerline velocity with pressure gradient. By using an approximate ve- 
locity profile in a system of integral equations, the friction coefficient, displacement 
thickness, and momentum-loss thickness in a flat-plate boundary layer a r e  found. 
Comparisons a re  then made with experiment. 

Its most successful form, the mixing-length 

HYPOTHESIS FOR TURBULENT SHEAR STRESS 

A hypothesis for turbulent s t ress  should meet a number of requirements if it is to 
be a valid candidate for consideration and use in actual calculations. 
of all, lend itself to expression mathematically as a tensor inasmuch as the s t ress  it- 
self is a tensor. If only one component of the s t ress  (e. g . ,  the shear component) is 
being considered, it should be formulated in a way that could conceivably be generalized 
to a tensor of order 2. 
namic variable of the problem it is to be used in, namely, the time-mean velocity, its 
derivatives, and, possibly, its integrals. Finally, it should express the experimental 
fact (ref. 4) that the s t ress  has a nonlocal character and that its value at any point de- 
pends not on the dynamic variable or its derivatives at that point alone, but on condi- 
tions at other points in the flow as well .  

As a restriction to problems of a simple yet practical sort, we confine our remarks 
to nearly unidirectional flows, steady and incompressible, whose lateral extent is much 
less  than the extent in the streamwise direction. Among these a r e  flows in pipes and 
channels, boundary layers, wakes, and jets. The velocity component in the direction 
of flow is U(Y). (Symbols a re  defined in appendix A. ) 

body. A very elementary property of turbulent drag is that it is closely proportional 
to the square of the undisturbed velocity of the stream. While it is true that in 
boundary-layer and pipe flows, for example, this behavior is modified by a weak 

It should, first 

Second, it should be expressed as a function only of the dy- 

It is convenient to begin by considering the integrated frictional drag force on a 
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Reynolds number dependence, such deviation can be ascribed to the presence of viscosity 
rather than to the turbulent motions themselves. Not only is the square of the velocity 
descriptive of the drag in a quantitative way, it is also dimensionally appropriate when 
combined with the other available dimensional quantities, the density of the fluid and 
the characteristic dimension of the body. This suggests that at any point in the flow a 
component of stress may be related to the square of the local mean velocity. Further, 
if the shear stress, which is the component of interest here, were approximated by a 
polynomial of arbitrary power in the velocity, it would need to have no more than two 
roots since it vanishes only twice: once at the maximum mean velocity, and once at or  
near the minimum velocity in the flow. 

a quadratic form in the local mean velocity, 
All of these considerations make it plausible to model the turbulent shear stress by 

If the two roots a re  located at the maximum velocity Um and at some "cutoff" velocity 
Uc below which the shear s t ress  vanishes, then 

where CY is a pure number that should be independent of mean-flow quantities. The 
quadratic form (eq. (2)) is, perhaps, the simplest hypothesis that could be made for the 
turbulent shear s t ress  and has the additional property that it resembles the definition of 
Reynolds s t ress  as a time-averaged product of fluctuating velocities by exhibiting a 
product of mean-velocity differences. It also has the desired appearance of a component 
of a second-order tensor, especially if cy were the component of a fourth-order tensor. 
In a very limited sense it is even a nonlocal description of the stress, introducing the 
velocities Um and Uc at points other than that at which the stress is being calculated. 

across the local cross section by the turbulent motions, so equation (2) should be thought 
of as a first approximation to the most general description of this sort. 

The conic section described by equation (2) is a parabola in the mean velocity. 
Whether or  not this is descriptive of the experimentally observed shear s t ress  can be 
judged by comparing the hot-wire measurements of shear s t ress  in flows of the type 
being considered here with parabolas fitted to them on the basis of least square error .  
This has been done in figure 1. The circular symbols represent actual hot-wire meas- 
urements or points from curves faired through hot-wire meauurements. The square 
symbols are values derived from mean-velocity data, either by estimating the cutoff 
velocity or by measuring the profile slope. 
pass through the point of symmetry, U/Um = 1, T = 0.  

Actually, of course, any point in the flow is connected with almost all other points 

The parabolas are  required in each case to 
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The agreement between the experimental data and the least-squares parabolas is 
sufficiently good that the error  in using the latter would not be a large fractional part 
of the true value for flows bounded by walls, namely, boundary layers and pipe and 
channel flows. However, for free turbulent flows, the half jet and the wake, the agree- 
ment is not as good. The parabola is successful in representing the stress as obtained 
indirectly from mean-velocity measurements, but these data a r e  not in agreement with 
the stress as measured directly by hot wire. The right leg of the parabola for the wake, 
which corresponds to the center of the wake, may yield a shear stress that is too small. 

(ref. 5), which are shown in figure 2. (Data are presented in ref. 6. ) At the center of 
the wake, the slope of the data is nearly infinite and the parabola, which is chosen to 
pass through the points T = 0, (Ue - U)/(Ue - Uo) = 0, 1, cannot accurately represent 
the stress in the center region. (Ue and Uo a r e  the velocities at the edge and center 
of the wake, respectively. ) 

On the basis of these observations the stress hypothesis (eq. (2)) wil l  be used sub- 
sequently to solve the full boundary-value problem for only those flows that a re  bounded 
by walls, although in the following section it will  be used to find similarity laws for free 
turbulent flows as well. 

One result of the comparison of hypothesis with experiment in figure 1 is the ap- 
pearance of a small but finite region of the flow, corresponding to 0 5 U 5 Uc, in which 
the shear s t ress  vanishes. Although the hypothesis does not require that this thin layer 
of flow be steady and, therefore, laminar, it does state that in it, for all practical pur- 
poses, the random fluctuations of velocity a r e  uncorrelated. (However, the correlation 
of velocity and temperature fluctuations apparently does not always vanish over a finite 
region. This w a s  shown by the calculations of Deissler (ref. 7) for high Prandtl nun-  
ber. ) The appearance of a region of zero s t ress  in this hypothesis corresponds to the 
influence of viscous damping functions in the eddy diffusivity of Deissler (ref. 7) and 
the mixing length of van Driest (ref. 8). 

occupies a position analogous to that of viscosity in viscous stress and should depend 
only upon the character of the turbulent motions; that is, it may be depend upon the 
geometry but not upon any dynamic parameter (imposed pressure gradient, free-stream 
velocity) that might be represented in the product of velocity differences. It may show 
dependence on preturbulence, free-stream turbulence, and so forth. 

skin friction and, in general, should be a function of the friction coefficient. The func- 
tion itself should change little from one bounded flow to another. In the calculations to 
be undertaken subsequently, the functional dependence wi l l  be taken as the simplest 
kind. In figure 3 is shown a sketch of the velocity distribution near the wa l l  in the fa- 
miliar u', y+ coordinates. The cutoff velocity occurs at the juncture of the profile of 

This latter point is emphasized by wake measurements of Chevray and Kovasznay 

The two adjustable parameters of the hypothesis a r e  (Y and Uc. The coefficient CY 

The cutoff velocity, for flows bounded by walls ,  is in the region dominated by the 
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! the turbulent region with the line uf = y+, which characterizes the sublayer, in which 
only viscous stresses occur. It is assumed here that, for all flows of one class, the 

, cutoff velocity u: = Uc/UT wi l l  be a constant. The constant will  be allowed to vary 
from class to class, but all pipe flows wil l  have the same value of u:, all channel flows 
their own characteristic value, and so forth. 

SIMILARITY LAWS 

An immediate test that can be applied to the hypothesis (eq. (2)) is a comparison of 
the similarity laws that it predicts with those encountered experimentally. In deriving 
the similarity laws one assumes that the viscous stresses may be neglected compared 
with the turbulent stresses. The similarity laws predicted by the shear-stress hypoth- 
esis for plane and circular wakes, plane and circular jets, and the half jet a r e  derived 
in appendix B. The results a r e  shown in the following table: 

Flow 

Plane jet 
Circular jet 
Plane wake 
Circular wake 
Half jet 

Zenterline ve- 
locity or  ve- 
locity dc icit -.- 

x-1/2 

X-1 
x-1/2 
x-2/3 

X0 

These a re  exactly the laws derived from the mixing-length theory and confirmed by ex- 
periment (Schlicting, ref. 9). 

The partial differential equation that governs the half jet is also appropriate to the 
outer portion of the flat-plate boundary layer. Consequently, the outer portion of that 
boundary layer should have Y/X as a similarity variable for the velocity profiles. 
This was confirmed experimentally by Townsend (ref. 10). 

CHANNEL FLOW 

A s  a first application and test of the hypothesis for turbulent stress,  consider fully 
developed-flow between infinite parallel wal ls  of spacing 2D (fig. 4). There is no ac- 

' celeration of the fluid, so the pressure gradient and retarding forces a re  in balance. 
The maximum velocity Um occurs at the centerline, so we may write for the fluid in 
the upper half of the channel 
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'k = - CYp(Um - U)(U - uc) =- a' for U, < u < um 
a y  a y  I a x  

and 

where the lateral coordinate Y is measured from the channel cen-zr .ne. 

have in laminar flow, namely, 
If the reference velocity is chosen to be the maximum velocity that the fluid would 

and if the half width D is chosen as the standard of length, equation (3a) after one inte- 
gration and equation (3b) after two integrations become 

du 
dY 
- - crp(u, - u)(u - uc) = -2y for u c < u < u m  

and 

u = l - y  for o < u  < u c  

The new parameter, p, is the dimensionless pressure gradient or, equivalently, the 
Reynolds number based on the reference velocity, 

Equation (4b) states that the velocity in the sublayer follows the parabolic distribu- 
tion that it would have in a laminar flow at the same pressure gradient (ref. 3, fig. 9.1). 
Equation (4a) is a Riccati equation (Goldstein and Braun, ref. 11) that can be trans- 
formed to the Airy equation in the following manner: The velocity deficit w = 
is replaced by a variable W through 

1 - u 

lThis transformation w a s  pointed out to the author by Dr. M. Goldstein. 
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There follows a second-order eqmtion 

W" + apwcW' + 2apyW = 0 

which, in turn, is transformed by W = eSYT(y) to 

2 T" + (2s + apwC)T' + (S + a p w , ~  + 

w E U  c s - %  

The first derivative can be eliminated by choosing 

so that 

Introducing a new independent variable x defined by 

2 
x = - GY + (T) awC 

, ,' 

I .  

leads to the Airy equation 

(9) 
dx2 
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In terms of the dependent variable T, the velocity deficit is 

where 

is the value of x at the origin of y. 
The most general solution of the differential equation (9) is 

T = clAi(x) + c2Bi(x) (12) 

where Ai(x) and Bi(x) are Airy functions (Abramowitz and Stegun, ref. 12) of the first 
and second kinds, respectively, and c1 and c2 are constants. 
the expression (10) for the velocity deficit, only the ratio of the constants k = c2/c1 
enters into the solution: 

Because of the form of 

Ait(x) + kBiT(x) 
w = Z [ & +  a Ai(x) + kBi(x) I 

The coordinate x has its origin at a point near the wal l  where the total s t ress  
(2y = T ~ D / ~ U ,  in dimensionless form) is equal to the maximum ~rp(w,/2)~ that the tur- 

The coordinate of the cutoff velocity is obtained alone reaches in the flow. 
equations (4b), (7), and (ll), which yields 

bulent s t ress  
by combining 

xc = xm - i a ( 1 -  uc) 

At the center of the channel the velocity deficit vanishes to give 

BiT(xm) + +mBi(xm) 

The boundary condition at xc is 
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/ I  , 

, 

Ai*(x,) + kBif(xc) I wc=2[&+ a Ai(xc) + kBi(xc) 

which, combined with equation (11) to eliminate wcy yields a second expression for k, 

Ai'(x ) - FmAi(xc )  k = -  C 

Bif(xc) -dxmBi(xc) 

Equating the two expressions for k relates the coordinate values xm and xc of the 
two velocities um and uc. 
that estimates from experiment show 

The relation may be expressed in a simpler form by noting 

xm = O(10) 

'xC = Q(1) 

Then, since for x > 2, Ai'(x),Ai(x) << Bi'(x), Bi(x), it follows from the first expres- 
sion for k (eq. (15)) that 

k < <  1 (19) 

and from the second expression for k (eq. (17)) that the relation between xm and xc 
is approximately 

Aif(xc) 

= Ai(xc) 

Introducing equations (11) for xm and (14) for xc, supplemented by equation (8) for a, 
yields a relation among um, uc, and p. The cutoff velocity can be eliminated because 
we have set u' = Constant and, by definition, 

or 

I .' 
h .  

i .. ' 
I .  

,- . . .. , 
- ,  . .  
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The resulting dependence of centerline velocity on the pressure gradient p is um 
plotted in figure 5, where it is compared with the experimental data of Laufer (ref. 13). 
The values of Q! and uz that were found by trial to provide a good f i t  were 0.01 and 6, 
respectively. The agreement between theory and experiment is good, the maximum dif- 
ference being at the high values of pressure gradient, where it is about 6 percent. 

The dimensionless average velocity through the channel, defined as 

can be found from equations (13) and (4b) to be 

- u + u  2 Ai(xc) + kBi(xc) 
11 = ' v  +-1n 

" C .  
- 

2 3/2 --- a Ai(xm) + kBi(xm) 

where 

2 - Yc(2 +uc)  

3 

- 
This quantity is also shown in figure 5. The ratio u/um approaches 1 as the pressure 
gradient becomes very large. 

In figure 6 a velocity profile at a Reynolds number (Re = pu,) corresponding to one 
of those at which Laufer's measurements were taken is compared with the experimental 
profile. The theoretical profile is not as full as the experimental profile, and this must 
be ascribed to a failure of the s t ress  hypothesis to provide a sufficiently strong stress 
in the center of the channel. Nevertheless, because the centerline velocity is predicted 
accurately, the mean velocity is not likely to be in substantial error. 

PIPE FLOW 

The momentum equation for fully developed pipe flow is (Laufer, ref. 14) 

10 



' ( I  

i where, as usual, X and R are the axial and radial coordinates, respectively. Intro- 
i ducing equation (2) and nondimensionalizing the radius of the pipe Ro and the centerline 
; velocity for laminar flow 

yield 

where 

.-'RRO- R3 0 

=I.r =G =I dx (25) 

The reference velocity (eq. (23)) is just one-half that for a channel flow with its 
half-width equal t o  the pipe radius; the factor 1/2 is also reflected in the definition of 
the dimensionless pressure gradient (eq. (25)). 

nel flow, and the solution proceeds in exactly the same way. Figure 7 shows the de- 
pendence of the dimensionless centerline velocity upon the dimensionless pressure 
gradient po as compared with the experimental data of Laufer (ref. 14) and Sandborn 
(ref. 15). The value of the parameter a! has been kept at 0: 01, but the value of u: 
has been raised from 6 to 7 to give the best f i t  to the experimental data. The calculated 
curve is slightly above the data at low p and slightly below at high p. Further calcula- 
tions show that raising uz above 7 can place the curve through the high-p data and that 
lowering it can place the curve through the low-p data. It can be concluded, therefore, 
that the choice of constant uz is nearly the correct one but that improvement could be 
obtained with a more general dependence on the parameter p. 

Also in figure 7 the dimensionless average velocity 

Equation (24) governing the flow is identical to  the Riccati equation treated for chan- 

u = 2 6  r u  dr  

11 



is compared with the universal resistance law for pipes (Schlicting, ref. 9). The cal- 
culated u line is nearly parallel to the um line, which shows that the calculated ve- 
locity profiles do not change with p sufficiently for the mean velocity to follow the ob- 
served values closely. 

Figure 8(a) shows the velocity profiles at Re = pOum of 250 000 and 25 000. Just 
as in the case of channel flow, the calculated profile has the correct overall character- 
istics but is not as full as the profile found experimentally by Laufer. The same pro- 
files a re  also given in terms of the similarity variables u+ and y+ in figure 8(b). 
plot shows both of the effects already observed in figures 7 and 8(a). 
files tend not to be as full as the observed data, and the centerline velocity is too high 
at the low dimensionless pressure gradient and too low at high p. 

This 
The calculated pro- 

FLAT-PLATE BOUNDARY LAYER 

Differ entia1 Equations 

For a boundary layer the hypothesis for the turbulent stress has the form 

where U6 is the stream velocity at the edge of the boundary layer. We again assume 
that the minimum velocity in the turbulent region Uc is given by 

u~ =!s = Constant 
*T 

with UT 

pressible boundary layer 

~ ~ / p  in the customary way. d 
The s t ress  hypothesis (eq. (27)) is introduced into Prandtl's equation for the incom- 

dug a2u a U a v  + v av = Un - +v-+-- 
ax ay " dx ay2 a y p  

and at the same time the dependent and independent variables undergo the transformation 

12 



I u = up, v = aU,v 

x = Lx, Y = a L y  

where L is a typical length for the geometry and u, v, x, and y are considered to 
be O(1). 

transformation (3) states that a boundary layer should be about 100 times as long as it is 
thick. This is in accordance with observation. Prandtl's equation is now 

Since a = 0.01 approximately, judging from experience with the pipe and channel, 

2 a  a + - (1 - u)(u - uc) (1- u ) t  -- au au - 1 dU6 

ax ay u6 dx 2 Re ay 2 a Y  
for uc < u < I 2 lJ-+v---- 

(3 1) 

where a local Reynolds number 

has been introduced. In this form of the equation, the inertia terms and the turbulent 
s t ress  terms are of the same magnitude, but the viscous term has a small coefficient. 
This is in keeping with the well-known property of turbulent boundary layers that the 
viscous forces are appreciable near the surface, where the velocity derivative is high, 
although the turbulent s t resses  dominate throughout most of the boundary layer. 

The continuity equation aU/aX + aV/aY = 0 becomes under the transformation 
(eq. (30)) 

- au+ -+ - -=o  av u (33) 

It wil l  be convenient subsequently to have the properties of the velocity profile near the 
wall  in terms of Q! and Re. Since the wal l  s t ress  is given by T~ = (pdU/dY)O, the 
dimentionless velocity derivative at the wall  can be expressed in terms of the friction 
coefficient f E 2-rW/pUs by 2 

I 
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Moreover, Pohlhausen's compatibility condition at the wal l  (Watz, ref. 16, p. 80), found 
by evaluating the motion with u = v = 0, requires 

Therefore, near the wall, 

a R e f  a 2 d R e  2 u=-y--- y + . .  
2 2 d x  

(34) 

Moments of the Equation of Motion 

Solutions to the partial differential equations governing the boundary layer have been 
found principally in three ways. 
reduce the system to one ordinary differential equation by a similarity analysis, at 
least for certain pressure distributions. This is not a viable approach for the system 
described by equations (31) and (33) because in the turbulent boundary layer the viscous 
s t ress  and the turbulent s t ress  lead to different similarity laws and it is not possible to 
arrive at an ordinary differential equation. A very direct method, which is as available 
to the turbulent boundary layer as to the laminar, is numerical integration by a march- 
ing technique. It would be necessary to use a smaller grid size in the viscous layer 
than in the outer, turbulent layer and, in addition, it would be necessary to  follow ac- 
curately the boundary between the two regions at u = uc. Thus, the marching tech- 
nique as now practiced for laminar boundary layers, although requiring some modifica- 
tion, is adaptable to the turbulent boundary layer as formulated herein. 

The method of solution that wi l l  be used here is the integral moment method, in 
which the equation of motion is multiplied by a weighting function and then integrated 
over the boundary-layer width to produce an ordinary differential equation in the inde- 
pendent variable x. Accounts of its development and practice a re  given by Walz 
(ref. 16) and Tetervin and Lin (ref. 17). Most frequently, the first velocity moment is 
used to provide an energy equation featuring a dissipation integral. However, Tetervin 
and Lin derived the most general form of an integral moment equation by using arbi- 
t rary powers of u and y, and this generality makes it possible to choose a preferred 
set  of the equations. 

preference for a system of moments in ( 6  - y)", that is, taking moments about the edge 

For a laminar boundary layer, it has been possible to  

The present, brief experience with the pair of equations (31) and (33) has led to a 
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of the boundary layer. A reason for choosing coordinate moments over velocity mo- 
ments may be seen by considering the zeroth moment of equation (31), which is (ref. 16, 
P. 87) 

where 8 and 6* are the dimensionless momentum-loss and displacement thicknesses. 
This equation, the lowest order equation of any moment system, has three dependent 
variables, 8, 6*, and f. If the next moment equation to be added is the first velocity 
moment, a new dynamic variable, the energy thickness, is introduced as an unknown. 
Thus, from this point of view the system does not close: the number of unknowns al- 
ways exceeds the number of equations. It seems more appropriate to first add two 
y-moment equations to equation (35) so  that the three equations may be thought of as a 
system for 8, 6*, and f and only then, if another equation is required, to add the first 
velocity-moment equation and the energy thickness to the system. 

of equations (31) and (33), it was found that the system was  unstable. This may have 
been due to the choice of approximate velocity profiles, which have to accompany the 
moment system, but it is more likely that the cause lies in the high powers of u, which 
multiply the e r ror  for any assumed profile and cause it to grow rather than diminish. 

The reason for choosing 6 - y rather than y as the moment arm is one of con- 
venience. A moment in (6  - Y ) ~  is no more than a linear combination of moments in 
y , y, . . . , y"-l, yn and, hence, introduces no new information. However, since mo- 
ments in y tend to yield more complicated equations than moments in u, any simpli- 
fication that can be attained is desirable. The derivation of the moment equations in 
6 - y is given in appendix C. It is apparent there that a number of terms arising from 
partial integration vanish at the outer edge of the boundary layer due to the choice of 
6 - y for the moment arm. In addition, as a subsequent discussion points out, some 
suggestions for velocity profiles a r e  expressed in terms of 6 - y and, as  a result, in- 
tegrals of moments in 6 - y a re  simplified. 

As shown by equation (C6) of appendix C, the nth integral moment equation for mo- 
ments taken around the edge of the boundary layer and for the restricted case of the flat- 
plate boundary layer is 

Moreover, when a system of velocity-moment equations w a s  used to solve the pair 

0 
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= - [.($)o + 6n, + n(n - 1) l6 ( 6  - Y ) " - ~  u .]- + n L6 (6 - y)n-l (1 - u)(u - uc)dy (36) 
a Re 

where 6 is the Kronecker delta. 

and 2. These are 

n, j 
We shall require explicitly only the first three of these equations, for n = 0, I, 

For n =  0: 

u(1 - u)dy = (A 
d x o  

For n = 1: 

J6 (6 - y)u 2 dy -E l6 u2 dy + J6" uv dy 
d x o  d x o  

Q! Re 

For n = 2: 

6 d l6 (6 - y)2u2 dy - 2 2 (6 - y)u 
d x o  d x o  

- - 1 4' u dy - G2(;),] + 2 L6 ( 6  - Y)(l - U)(U - U,)dY 
2 

CY. Re 
(374 
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The zeroth equation is just a special form of equation (35) for a constant stream 
velocity. It is obtained after writing, in equation (36), 

d6 
ax dx 

6 v (8 )=-  ' - d y = - $  au u d y + -  

The zeroth equation is noteworthy for being independent of the form assumed for the 
turbulent stress; only the viscous s t ress  at the wall  enters into it. The n = 1 equation, 
however, contains an integral of the turbulent s t ress  across the turbulent portion of the 
boundary layer. This integral represents the total force exerted by the plate laterally 
against the fluid. The equation for n = 2 has an integral of the first moment of the 
turbulent stress; and since the s t ress  peaks close to the wall, this shows that taking the 
moment about the edge of the boundary layer is once more desirable. It emphasizes the 
effect of the s t ress  more than if the moment were taken around y = 0. 

Choice of Velocity Profiles 

The integral moment method proceeds by performing the integrals and derivatives 
in the system (37) on a velocity profile that contains as many free parameters as there 
a re  equations in the system. The profile must have the form of equation (34) near the 
wall; and it is desirable that at the edge, y = 6, of the boundary layer, a u/ay2 = 0 in 
agreement with equation (31). 

Power-law profile. - One of the most successful representations of the dimension- 
less velocity has been the form u = (~ /6) ' /~ ,  where e > 1. Unfortunately, it does not 
meet the requirements set previously for behavior at the wall  and the edge of the bound- 
ary layer. The failure at the latter point is not serious; but in order to avoid a singular 
slope at the wall, we use equation (34) (modified for constant Re) near the wall  so that 

2 

y for O < u < u c  (384 Q Ref 
2 

u=- 

If we again choose uc by requiring that the boundary between the sublayer and the 
turbulent region be at a constant velocity on the u+, yf diagram, we find that 
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or  

It proves convenient hereinafter to use .\Tr rather than f or to choose as a new vari- 
able 

F 5 uC,; + f  = uc 

Then 

- J 
yc -j 

where 

($ J =- = Constant 

(39) 

The profile (eq. (38a)) becomes 

The two parts of the profile (eqs. (38)) must be matched at u = uc, leading to a 
connection between the three free parameters 6, e, and F of the profile, 

6 = -  J 
Fl+e 

(43d 

Its differential form is 
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where 6 

first two of the moment equations (37). In appendix D it is shown that they yield a sys- 
tem 

dd/dx, and so forth. 
In addition to using this relation between the parameters, we shall also use the 

AO16 + AO2e + AO3F = Bo 

and we bring equation (43b) into this system by wr i t ing  it as 

A316 + A e + A33F = B3 32 

with A21 = 1/6, A22 = In F, A23 = (e + l)/F, and B3 = 0. 

specified, must be converted to  the parameters 6, e, and F. To illustrate the integral 
moment methods we shall integrate the flat-plate, boundary-layer system (44) by starting 
at station 4 of the Wieghardt experiment and using the measurements as given in the re- 
port of the Stanford Conference (ref. 18) for starting conditions. At X = 0.387 meter, 
the dimensional momentum-loss thickness 0 = aL8 is 0.0924 centimeter and the friction 
coefficient f is 0.00364, where L = 5 meters is the length of the plate. 

Initial conditions. - The initial conditions for the system (44), however originally 

The initial condition for  F comes from equation (39). According to  appendix D, 

which, combined with equation (43a), yields 

i - ~ +  e (I-F"~-I-FR~) o - o  
2 3 Fe+l e +  1 e + 2  aLJ  

as an initial condition for e. The remaining initial condition for 6 follows from equa- 
tion (43a). 
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Three-parameter profile. - A velocity profile introduced by Pai (refs. 19 and 20) 
for channel and pipe flows and later adapted by Sandborn (ref. 21) to boundary layers 
has the form 

This is a profile with five parameters that is intended to hold over the entire boundary 
layer. As in the previous example we shal l  use this form only in the turbulent region 
and supplement i t  with a straight-line profile in the sublayer. We shall also change the 
square term to a cubic in order that the second derivative vanish at the edge of the 
boundary layer as required by t h s  equation of motion. To meet the boundary condition 
at the outer edge of the layer, we set  A equal to 1; and to reduce the number of pa- 
rameters, we match both the values and slopes of the two profile segments at u = uc. 
The velocity profile is then specified by 

where uc = F and yc = J/F as before; and 

u = 1 - bC3 - cp3e for uc < u < 1 

where 

- l + F  
(6 - Yc)F2 

b E l - F - c  

Since the matching conditions have determined b and cy only 6, e, and F remain to 
be determined by the moment equations. Using the moments specified by n of 0, 1, 
and 2, we again get a system of ordinary differential equations of the form (44) whose 
coefficients a r e  defined in appendix E. 
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Calculations 

The two systems of moment equations corresponding to the two approximate veloc- 
ity profiles just described have been integrated, and the results a re  shown in figure 9. 
The two-parameter profile can represent the momentum-loss thickness well but, since 
the two initial conditions were used for 0 and f, the displacement-thickness curve 
shows an error  of about 8 percent at the end of the plate. It is apparent that the solu- 
tions want to give the flow a constant friction coefficient. This can probably be attri- 
buted to the very simple assumption made in choosing the cutoff velocity. A weak de- 
pendence of uc upon f o r  F might improve the agreement with experiment at the ex- 
pense, of course, of adding an additional experimental parameter. 

parameter profile in the representation of displacement thickness but is hardly otherwise 
superior. 

Figure 10 compares the two velocity profiles with the measured velocity distribu- 
tion. The velocity measurements and the calculated profiles a re  plotted against the 
similarity variable for the outer portion of the boundary layer q = Y/(X - Xo), where 
the virtual origin has been found by trial to be Xo = -27 centimeters. Both profiles 
have difficulty in duplicating the knee of the curve in the region near the wall. In the 
case of the power-law profile this can be attributed to the power itself, which instead of 
ranging from 7 to 9 is approximately 4. 
the straight-line segment in the sublayer. The three-parameter profile follows the cubic 
term from y = 6 to nearly y = yc because the value of the exponent e is so large. At 
that point the third term provides a sharp swing from the cubic curve down to the point 
u = uc, q = qc at the end of the linear profile of the sublayer. 

The three-parameter velocity profile shows some improvement over the two- 

Presumably, this is due to the introduction of 

For each case the point 
is marked by a heavy dot. uc’ 7, 

The adjustable parameters a! and u: turn out to be somewhat profile dependent in 
the case of the boundary layer. For the two-parameter profile the values a! = 0.01, 
u l  = 6, which were used for the channel, were again employed. However, the values 
that prove appropriate for the three-parameter profile are (Y = 0.0135 and u i  = 10. 

CONCLUDING REMARKS 

Comparing the calculations with experiment indicates that the stress hypothesis has 
the proper overall characteristics for describing turbulent flows near walls. The gen- 
erally correct trends that the theory exhibits are probably attributable to the appearance 
of the square of the mean velocity in the stress; the lack of precision over a wide range 
of operating parameters (p or  x) lies in the choice of the cutoff velocity. It appears 
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that the dependence of the cutoff velocity upon the friction coefficient should be refined. 
Nevertheless, the variation of cutoff velocity with friction coefficient in the bound- 

ary layer, although not precise, is encouraging for the description of the flow near 
transition and under accelerated free streams. Because the cutoff velocity increases as 
the square root of the friction coefficient, the theoretical boundary layer will tend to 
become mostly sublayer whenever the friction is high. This is just the condition ob- 
served experimentally near transition and relaminarization. An accurate description 
under such conditions wi l l  require a more flexible profile in the sublayer. 

shear component of s t ress  can be extended to provide the normal stresses as well. Al- 
though the normal stresses do not arise in the particular examples discussed herein, it 
is agreed that they may be important in some flows, in a boundary layer near separation 
for example, and certainly wi l l  be needed for the calculation of pressure distributions. 
In addition, a representation of other components of the stress may give some clue to 
the failure of the hypothesis in free turbulent flows. 

It is not apparent whether the argument that led to the proposed expression for the 

Lewis Research Center, 
National Aeronautics and Space Administration, 

Cleveland, Ohio, May 20, 1977, 
506-24. 
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APPENDIX A 

SYMBOLS 

constants 

matrix coefficients 

Airy functions 

derivatives of Airy functions 

(zap) 213 

component of column vector 

coefficients in velocity profile 

function of 6, e, and F defined in appendix E 

constant 

half-width of channel 

form parameter 

u; dz 
friction coefficient 

K,”I. Re 

constant, c2/c1 

length of flat plate 

order of moment 

pressure 

dimensionless pressure gradient, UrD/v 

dim ens i onles s pres sur e gradient, URR0/v 

radial coordinate 

radius of pipe 

Reynolds number 

dimensionless radial coordinate, R/% 

function of 6, e, and F defined in appendix E 

parameter in channel solution 
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T intermediate variable in channel solution 

U mean velocity in X-direction 

cutoff velocity 

maximum velocity in flow 

velocity at edge of boundary layer 

reference velocity for pipe, Ro I aP/aX 1/4p 

reference velocity for channel, D I aP/aX I /2,u 

friction velocity, 4% 
u, u u dimensionless velocities 

uC 

'm 

U6 

uR 

'r 

2 

2 

c9 m 

- 
U average dimensionless velocity 

V velocity in Y-direction 

V dimensionless velocity in y-direction 

W intermediate variable 

W dimensionless velocity deficit, um - u 
dimensionless velocity deficit, um - uc 

wC 

xO 

XY y Cartesian coordinates 

virtual origin of boundary layer 

x, Y dimensionless Cartesian coordinates 

X independent variable for Airy equation 

value of x at y = yc 

value of x at y = 0 

value of y at u =  uc 

variables defined in appendix D 

adjustable parameter in s t ress  hypothesis 

xC 

XITI 

YC 

Z, Z i  

a. 

A* displacement thickness 

6 

6* dimensionless displacement thickness 

dimensionless nominal thickness of boundary layer 

5 
0 momentum - loss thickness 

( 6  - Y)/@ - Yc) 
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e dimensionless momentum-loss thickness 

p viscosity 

v kinematic viscosity 

p density 

T turbulent shear s t ress  

Tt sum of viscous and turbulent shear stresses 

shear s t ress  at wall TW 
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APPENDIX B 

and 

SIMILARITY LAWS OF JETS AND WAKES. 

The equations governing jets and wakes are 

a .  a *  - (YJU) + - (YJV) = 0 ax ay 

where j = 0 for plane flows and j = 1 for misymmetric flows. 

Jets 

Integrating the momentum equation (Bl) over the appropriate interval after first 
multiplying by Yj yields 

where b = -03 for j = 0 and b = 0 for j = 1. The second term on the left can be in- 
tegrated by parts using equation (B2) to obtain 

Since T and V vanish at the limits of integration, the momentum integral equals zero. 

We now introduce a similarity transformation 
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where UR is a reference velocity. We may take the first term in equation (Bl) as typi- 
cal of inertia terms and find it to be 

The stress term becomes 

where fm and f c  correspond to Um and Uc and we have assumed that f c  is inde- 
pendent of x. 

respectively) yields 
Requiring equal powers of x in the inertia and s t ress  terms (eqs. (B5) and (B6), 

2 m - 1 = 2 m - n  037) 

or n = 1. Thus, the similarity variable for both plane and circular jets is q = y/x. 
The decay law for the centerline velocity is given by equation (B3): 

- a .2m+(j+l)n Sm qjf2 dq = 0 
ax b 

The power of x in this expression must vanish under the constraint (B7) so that 

or m = -1/2 for plane jets and m = -1 for circular jets. 

Wakes 

In this case we introduce the velocity deficit U' = Um - U and consider only the 
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wake far downstream, where Ut is small compared with Um. 
formation (eq. (B4)) is again employed, with U replaced by U'. The typical inertia 
term becomes 

The similarity trans- 

ax V 

and the s t ress  term becomes 

3 
'RX2m-n 1 d a- - - [VJf(fc - fd 
V 77j d~ 

where it has been necessary to assume again that f c  can be considered constant. 
Equating powers of x in the inertia and stress terms yields m - n = -1. 

Condition (B3) becomes for the wake 

from which m + (j + l)n = 0. The solutions of the conditions for m and n a re  

for plane wakes 
1 n = -  
2 

for circular wakes  
1 
3 

n = -  

Half Jet or Mixing Layer 

The equations of motion for a half jet or mixing layer are those for a plane jet. We 
take the lower fluid to be at rest and the upper fluid to have the constant, undisturbed 
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velocity Um. 
ducing this result into the comparison of inertia and stress terms in the plane-jet 
analysis yields n = 1. 

The latter requirement forces m to equal 0 in equation (B4). Intro- 
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APPENDIX C 

Nth MOMENT EQUATION FOR FLAT-PLATE BOUNDARY LAYER 

The integral of the nth moment by 6 - y of the dimensionless boundary-layer q u a -  
tion (31) with U6 constant is 

i6 (6 - Y ) ~  (I + v ;)dy = l6 (6 - Y ) ~  $ [A: + (1 - u)(u - uc) dy (Cl) 3 
It is desired to transform this equation to a manifestly ordinary differential equation in 
x. Beginning with the second term on the left side, one has 

- E 6  - Y ) ~  uv]dy + n uv(6 - y)n-l dy 
= 6”:; 

+ k6 (6 - y)” u- au dy 
ax 

The last term in equation (C2) is just equal to the first term in equation (Cl) and their 
sum is 

6 
(6 - Y ) ~  u2 dy - 6 n, 0 6 - n6 (6 - Y)”-’ u2 dy (C3) 
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On the right side of equation (Cl) the first term is proportional to 

= - + 8, + n(n - 1) f u(6 - Y ) " - ~  dy (C4) 

and the second term is 

6 
(6 - y ) " L  (1 - u)(u - uc)dy = [(6 - ~ ) ~ ( l  - u)(u - u,)] 

a Y  YC 

6 
+ n J (6 - ~ ) ~ - ' ( 1  - u)(u - uc)dy 

YC 

6 
= n (6 - ~ ) ~ - ' ( 1  - u)(u - uc)dy 

YC 

Combining equations (C2) to  (C5) yields for the entire equation 

6 

-$ d 
( 6 - y ) " u 2 d y -  6 g - n i  f ( 6 - y ) n - ' u 2 d y + 6  v ( 6 ) + n 1 6 ( 6 - y ) n - 1 u v d y  

d x o  n, 0 n, 0 

6 
+ n (6 - y)n-l (1 - u)(u - uc)dy (C6) 

J C  

Now consider, further, the case when the velocity profile is specified as a function 
of three parameters, one of which is the nominal boundmy-layer thickness 6: 
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u = u(y; 6, e, F) ( C7) 

We can transform equation (C6) to an ordinary differential equation in 6, e, and F by 
introducing from the continuity equation 

and 

where 6 f de/&, and so forth. The coefficients of 6, e, and F on the left side of 
equation (C6) are then, respectively, 

6 
A = (6 - Y ) ~  u2 dy - 6 2 l6 u dy - n a6 (6 - y)n-l u i y E  dy' dy 

n2 ae n,o ae 

( C W  
- n l6 (6  - y)n-l u Y - au dy' dy n = 0,1,2 . . . 

aF 

With the further definition for the right side of equation (C6), namely, 
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6 
+ n(n - 1) (6 - y)n-2 u dy] 

a! Re 0 

6 
+ n /  (6 - ~ ) ~ - ' ( 1  - u)(u - uc)dy (C8d) 

YC 

we can rewrite equation (C6) in the desired form of an explicitly ordinary 
equation 

An16 + AnZe + An3F = Bn 

In principle, any set  of three of these equations may be used to solve 
and F. In practice, the simplest to use  will  be the first  three: n = 0, 1, 

differential 

for 6, e, 
2. 

33 



APPENDIX D 

MATRIX COEFFICIENTS AND INITIAL CONDITIONS FOR 

POWER-LAW VELOCITY PROFILE 

We assume the velocity is described by 

u = -  F2 y for 0 < u < u c  
J 

u = ( ~ r ’ ~  for uc < u < 1 

The coordinate at the partitioning velocity is 

- J 
yc -; 

and the relation between the parameters 6, e, and F resulting from the matching at 
u = u  is 

C 

6 = -  J 
Fl+e 

The dimensionless displacement thickness 

-P CYL A* 6* = f 6  (1 - u)dy = lYc (1 - 5 y)dy + f 6  [1 - 6,””Idy 

YC 0 0 

= J[+l(.+$,) -t] 
Similarly, the dimensionless momentum thickness is 

(43) 

1 F  1 e (1 - F e+l ) -e (1 - I?-“,]} 
0 = 0 = 6 u(1 - u)dy = J{- --+;[- 
CrL 2 3 l+e e + l  e + 2  
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The coefficients appearing in the first two integral moment equations a re  obtained by 
substituting the velocity specifications (42) and (Dl) into equation (C8), performing the 
integrals, replacing yc with equation (40), and then performing the differentiations with 
respect to 6, e, and F with J held constant. In terms of the definitions z = yc/6 = 
J /F~,  z1 = Z1/(w1), z2 = z and z3 = 1 - zl, the coefficients are 

e 
2 +  e 

(1 - zl) - - (1 - z2) e 
AO1 = z1 - z2 + e+l 

1 - z1 z1 l n z  2 (1 -  z2) 2z2 l n z  

e +  1) 2 e(e + 1) (2 + e)2 4 2  + e) 1 - +- A02 = 6 [ (  

Bo = F2 
2 a? J R e  

A12 = 

e +  1 

- z2) 
J 2 + e  e +  1 

e(1 + F)(1 - zl) 

a Re 

A third differential relation between 6, e, and F is obtained by differentiating 
equation (43). After multiplication by 6, the coefficients a re  
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A21 = 1 

Az2 = 6 In F 

6 
A 2 3 = F ( e +  l) 

B2 = 0 
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APPENDIX E 

MATRIX COEFFICIENTS AND INITIAL CONDITIONS FOR THE 

THREE-PARAMETER PROFILE 

If the velocity profile defined by equations (47) and (48) is used to evaluate the 
coefficients defined in equation (C8), they can be written as follows: 

F2S2 

3J(e - 1) 
A01 = S I +  (6 - Y,) 

1 F2 
B o = 2 -  a! Re J 

B1 =- 1 (1 - $)+ (6 - y,)[(l - F)Sll - S12] 
2 

a! Re 



In these expressions for the matrix coefficients the following groupings have been used 
y, = J/F, c = [(6 - yc)F2/3J - 1 + g/(e - l), and b = 1 - F - c 

- b C Sll - -+- 
4 3 e + 1  

2 b2 2bc C 

=1+ Z7-i + iE7 

s1 = sll - s12 

s 2 = s  + 2 - + - - -  2 1  (" c - b  7 3 e + 4  6 e + 1  

2c s3 = - l +  2b + 
(3e + 1)2 (3e + 4)2 (6e + 1)2 

S 4 = 1 , - 2 ? + Z )  7 3 e + 4  

b c  
4 3 e + 1  

c1 = 1 - - - - 

- L E - -  C 

c 2 - 5  8 3 e + 5  
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I 

1 b -  c c3 = 
(3e + 2)2 (3e + 5)2 (6e + 2)2 

1 1 c ------ 
C 4 - 3 e + 2  3 e + 5  6 e + 2  

b c 
5 3 e + 2  

C71= -+- 

1 
2 

C7 = -  - 2C71 + C,2 

c* = 1 + 2(C1 - 1) + S12 

2 2c b2 2bc c C10 = 1 - b - -+- +- +- 
e + l  3 e + 2  2 e + 1  

1 b c 
cll =- - - - - e + l  e + 2  2 e + 1  

2b 2c 
3 e + 2  

C12 = 1 - - - - 
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=“ +---- 1 ‘11 ‘12 
‘15 l4 3 e +  1 3 24 

‘12 - 2cll - 2c15 3 ‘16 = 

b 
‘191=4 

ec 
‘192 == 

‘19 = ‘191 + ‘192 

F2 c&j = 
3J(e - 1) 

- - C  ce -- 
e - 1  

If A* and 0 are the initial values of the dimensional displacement and momentum- 
loss thicknesses, and if f is the initial value of the friction coefficient, the correspond- 
ing initial values of the parameters 6, e, and F are obtained by calculating displace- 
ment thickness, momentum-loss thickness, and friction coefficient from the profiles 
in equation (19) and equating them to the experimental values. The result is a set of 
three equations 
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for 6, e, and F. 
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(d) Boundary layer, bP/bx> 0. 
(From ref. 24.) 

(b) Channel, Re = 30 800. (From 
ref. 13.) 

~ 

(c) Half jet. (From ref. 23. 

(e) Pipe, Re = 25 OOO. (From 
ref. 14. ) 

( f )  Plane wake, Re -680. (From 
ref. 3 . )  
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Figure 2. - Shear-stress distributions in wake of a plate. 
(From refs. 5 and 6 . )  
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Figure 1. - Turbulent shear-stress distributions (varying scales). 
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Figure 3. - Method of specifying cutoff velocity. 
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Figure 4. - Channel coordinates. 
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Figure 5. - Dimensionless maximum and average velocities i n  a channel. 
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Figure 6. - Velocity distribution across a channel. a -0.01; u z - 6 .  
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Figure 7. - Maximum and average velocities in a pipe. a = 0.01; uz = 7. 
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Figure 8. - Velocity distr ibution in a pipe. a -0.01; u: -7. 
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Figure 9. - Friction coefficient, displacement thickness, and 
momentum loss thickness in a flat-plate boundary layer. 
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Figure 10. - Velocity profiles in a flat-plate boundary layer. 
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